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Abstract—This work focuses on the problem of systems diagno-
sis using classification-based method. We employ for this purpose
the well known Support Vector Domain Description, abbreviated
as SVDD, to make our decision about the functioning state.
Because of their complexity, industrial systems are able to operate
in various modes. Some of these modes correspond to normal
functioning and some others represent faulty functioning. To
properly discriminate between modes, we deal with such systems
according a multi-model description based on multi-class version
of the SVDD technique. To well assess the proposed approach,
simulations and experimental tests are done on real hydraulic
system consisting of three interconnected tanks.

Index Terms—Classification, Diagnosis, Multi-model, SVDD.

I. INTRODUCTION

NGINEERING systems, because of their increasing com-
E plexity, are able to operate in various states. Some of
these states correspond to normal functioning and some others
represent faulty functioning. Therefore, the diagnosis is a
major task in industrial applications. It consists in tracking
the operating state of the system in the course of time and
detecting any abnormal event as it occurs. In this paradigm,
many methods can be useful and applicable. We categorize
them into analytical methods based on mathematical models,
relational methods based on expert’s knowledge and methods
founded on pattern recognition and data classification. In
pattern recognition, the functioning modes are represented by
a set of similar patterns, called classes. These patterns are
obtained by the observation of the most informative parameters
of the system. Among the classification algorithms, we cite
the Support Vector Domain Description known as SVDD.

The SVDD technique is developed at first by [1], [2]. Itis an
efficient technique employed to solve one-class classification
problems (named also novelty detection problems). The
fundamental goal of one-class learning is to generate a rule that
distinguishes between a set of target objects called the target
class and unseen-novel objects designated as outlier class. In
some diagnosis cases, classes are able to evolve over the time
and progress in their projection space. For that reason, any
diagnosis approach must be endowed with useful tools which
allow following online these evolutions and detecting changes.
To do so, we use a dynamic version of the SVDD technique
proposed in previous works [3], [4]. Furthermore, to fall
into the optimum, the SVDD training process assumes dense
sampling and requires that all training examples be available

at once for a single “batch” learning: if a new sample is
presented, the classifier must be retrained from scratch. The
concern arises when the cardinality of data increases insofar
as the process becomes embarrassing in terms of memory and
training time. To overcome this dilemma, we adopt some
approximations on the cardinality of the training dataset in
order to ensure the rapidity of convergence and reduce the
training time [3], [5]-[7], [9], [12]. In the other hand, because
of their increasing complexity, industrial systems are often
described according a multi-model architecture for purposes of
simplification. In this case, the diagnosis task can be perceived
as a multi-class classification problem since there are many
functioning models, where each model designates one class of
data. In view of that, the SVDD technique is as well adapted
for multi-class problems in order to support the multi-model
architecture of complex systems.

The rest of paper is organized into four sections. In Section
2, we introduce a global overview of the SVDD technique and
its theoretical foundation. As for Section 3, it is reserved to
describe the dynamic version of SVDD proposed in previous
works. The multi-model approach for system diagnosis based
on SVDD is well explained in Section 4. We show also here
some experimental tests performed on real hydraulic system.
In the conclusion, we summarize the presented work and we
discuss the interest that yields.

II. SVDD : THEORETICAL OVERVIEW

Let x = {x1,...,2;,...,zn} be a target training set, with
x C R?*.  The SVDD technique is a well known data
description based on Kernel machines. It aims to find the
smallest hyper-sphere containing the most of training instances
of the target class with some relaxation defined by slack
variables. The original problem is formulated as a constrained
optimization as follows:

N
min R2+CZfi (D
i=1
st (wi—a) (zi—a) <R*+&,
& >0 Vi=1,..,N,
where R and a denote respectively the radius and the center of

the hyper-sphere and C is the regularization parameter which
gives the trade-off between the volume of the sphere and the
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misclassified instances. The variable &; is a slack variable
designating the distance of ‘" data point from the sphere
boundary. It represents a quadratic optimization problem that
can be solved efficiently by introducing Lagrange multipliers
for constraints. The Lagrangian formulation of the problem is
given thus by the following formula:

L= R+CY 6=Y o (R+&— @-a) (@ -a)

7

- Z%‘&'

3)

where «; and ~; are the Lagrange multipliers, so that c«; >
0, v; > 0. Note that for each training data point x;, a
corresponding «; and ; are defined. The expression of L has
to be minimized with respect to R, a, and & and maximized
with respect to a; and +;. Taking the derivatives of (3) by
setting 0L/OR =0, 0L/0a =0 and OL/J¢; = 0, we obtain
the Karush-Kuhn-Tucker (KKT) conditions [8] given by the
following relations:

oL N

an 7':17

R 0 = ;a,

oL 3 o)
9 =0 = ;aﬂi:m

oL

8&70 = 0<a; <C.

The QP equations are obtained by substituting the above KKT
conditions in (3). We obtain a dual problem expressed by:

max

(I
1=
e
B
}ﬂ
&
|
N =
e
] =
L
bQ
5
QH
“

N
st > ai=1, 0<a; <C Vi=1,..,N. (6)

After solving such a standard Quadratic Programming (QP),
we obtain the solution o; = a*, whose corresponding train-
ing instances can be classified as Boundary Support Vectors
(BSVs) outside the hyper-sphere, if a; = C, Non-Support
Vectors (NSV's) inside the hyper-sphere, if o; = 0 and Non-
Boundary Support Vectors (N BSV's) just at the hyper-sphere,
if 0 < a; < C. Any data satisfying one of the above
KKT conditions is designated as target class. Otherwise, it
is an outlier. Furthermore, all points with «; > 0 are called
Support Vectors (SV's) which restrict the data domain and
can fully describe the one-class boundary. We can write thus
SVs= BSVsUNBSVs. According to (4), the center a can
be easily calculated as:

N
a = Zaixi. (7)
=1

To make prediction on the membership of an unknown
instance z, the squared distance to the center of the sphere
must be calculated using the following formula:

N N N
F(z,a) = (2T 2) =2 Z ai(2Tx;) + Z Z aiaj(z; xy)

i=1 j=1
3

Afterward, we define the decision function as:
G(z) = R* — F(z,a) ©)

Now we say that the test instance z belongs to the target
class or lies inside the hyper-sphere if G(z) > 0. Otherwise,
it is an outlier lying outside the hyper-sphere. Similarly, in
traditional support vector machines and other kernel machines,
the inner product between two vectors in (7) and (8) can be
replaced by various kernels satisfying the Mercer theorem
[10]. By introducing a kernel function, the formula (8)
becomes as follow :

F(z,a) = K(27 2)—2 Z aiK(zTJ:Z-)—I—Z Z oo K (2, 25)

i=1 j=1
(10)
As we see, the methodology above gives efficiently an
optimized domain description particularly when there is
no confrontation with evolutionary data. Nevertheless, the
challenge becomes valuable when dealing with non stationary
data likely to progress in their space. In the next section, we
address this paradigm.

III. PREVIOUS WORK : FAST DYNAMIC SVDD
A. Initial formulation

The main challenge is how to deal with the newly added
samples and on which criteria we rely to discard irrelevant
data. At each iteration, the optimization process is performed
on training set denoted Sirgining. AS initialization, let
Straining = SVs. As previously mentioned, two main
aspects will be addressed; the incremental classification and
the dynamic adaptation. The adopted approach is structured
around basic proprieties that we analyze in the sequel.

Propriety 1: In the classification learning scheme at each
step we add one instance to the training set. If the newly
added sample meets the KKT conditions, it has not any effect
on the previous data description and can be discarded from
the training set. Therefore, the optimization process is useless
in this case since the new added sample doesn’t minimize the
currently minimum objective function and the same result will
be produced. This property leads us to reduce considerably
the cardinality of training samples and ensure the rapidity of
convergence.

Propriety 2: On the other hand, if samples in the
newly added training set lie outside the hyper-sphere, some
among them will become new support vector surely. This
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propriety indicates that in the newly added training set the
samples violating the above KKT conditions should be taken
and integrated within the training working set during the
optimization process.

Accordingly, as a first step towards an incremental learning,
we should seek the neighborhood of each instance presented
online with respect to the current data domain. To do so, for
a random sample z(*) coming at iteration k, the distance to
the center of the hyper-sphere can be calculated through (8).
Thus, two cases are possible here:

Case 1: G(z) >0
This case means that the query sample z; lies inside the
hyper-sphere (target). According to Propriety 1, this sample
has no effect on the current SV's set and don’t minimize the
objective function. Hence, we preserve the same whole of
SV's and we don’t carry out any change on it. In this way,
we get rid for once of the optimization process which can be
expensive in terms of time and memory while guaranteeing
the optimal solution.

Case 2: G(z) <0

Each sample satisfying this condition is considered as outlier
and likely to be probably a new support vector according
to Propriety 2. In this case, the SV's set needs to be
updated to incorporate samples newly detected. To improve
performances, we assign a dynamic aspect to the learning
process. Each insertion of a new sample must be accompanied
by a deletion procedure applied on irrelevant data. We aim
thus a removal/insertion procedure.

B. Dynamic data removal /insertion

1) Removal procedure: The removal procedure, as well the
insertion procedure, is performed only when a random sample
z¢ received at iteration ¢ is an outlier meeting the condition
mentioned in case.2. Otherwise, z; is assigned to NSV's
set. The deletion concerns particularly the irrelevant samples
that don’t follow the evolution of data domain. F. Camci
proposed in [11] a weighted support vector novelty detector
(WSVND) for non-stationary data. To explicitly support
the non-stationary nature of data, the method incorporates the
notion of weight or importance of data point based on its age.
It forces the support vectors to be as young as possible so
as to be able track the non-stationary process. The solution
seems biased and insufficient given that we can fall into the
case where old support vectors can be more significant than
younger some others. In this way, the method is not immune
to local optima drawbacks if support vectors are judged upon
their oldness. In view of that, we propose in this work a
simple formulation to deal with this phenomenon. Instead
of judging data with respect to their oldness, we perform
a weighted relevance measure based on the neighborhood
concept. Indeed, samples lose their significance while moving
away from the high-density zone of the data domain. Based
on this assumption, a spatial trend prediction needs thus to

be realized. As a notation, for each coming z;, let a; and
at+1 be respectively the current center of the hyper-sphere
and the probable future center when z; becomes a new support
vector. Let also d; and d;; be the distance between a sample
x; € SVs and respectively a; and asy1. We attempt to
extract the element among the whole SV's to be deleted. This
removable support vector SVy.; should satisfy the following
expression:

SVaer = arg max (sign(Ad) x ||z: — 24]]) ,

x; € SVs,i=1,...,Ngys (b
The term Ad is the distance variation expressed as:
Ad = diy1 —dy, (12)
where
T
dt:\/(l’i*at) (zi — ar) (13)

diy1 = \/(331 - at+1)T (i — az41)

The predicted center a;y; can be simply determined by a
recursive relation, so that:

1

- 14
NSVS +1 ( )

ai+1 = Q¢ + (Zt - at)

According to expression (11), the rule chooses for deletion the
foremost support vector which moves away from center when
the last one shifts relative to each sample newly appended.
This seems proper as much as the removable support vector
becomes increasingly isolated and far-off from the high-
density zone of the data domain. Once SV is determined,
the training set Siraining is afterwards adjusted by deleting
SV4er and inserting the new coming instance z;, so that:

Straining - {Straining} \ {SVdel} U {Zt}

Evidently, the instance z; must satisfy the case.2.

15)

2) Insertion procedure: At this stage, to enrich the training
set and guarantee an optimal description of the data domain,
we aim to find data points among the NSVs set which
can be probably new support vectors. Without doubt, these
points are those in close proximity to the interior boundary
of the hyper-sphere. For each point z; € NSVs (j =
1,..., Nnsvs),Nnsvs is the total number of samples belong-
ing to NSV's set, samples which are most likely to be support
vectors can be formulated as:

\/F(acj,at) > T, _] = 1,....,NNgv.

The term T is a decision threshold which is fixed with respect
to the data distribution estimated on the target class whole.
We denote by PSV's the set grouping the Probable Support
Vectors meeting conditions given by (16). Hence, the training
set Straining 1S adjusted again to insert the P.SV's components,
so that:

(16)
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Straining - {Straining} @] {PSVS}

As a result, we obtain at the end a compact training set
that reduces significantly the complexity of the QP problem
in terms of cardinality of data and convergence time. This
makes the method useful for applications requiring fast data
tracking, even online processing. Moreover, despite their small
cardinality, the training set elements are significant and well
chosen through selective rules to ensure the optimality in the
solution. More experimental tests of proposed improvements
can be found in [3].

a7

IV. MULTI-MODEL APPROACH FOR SYSTEM DIAGNOSIS
A. System description

For validation, we consider a hydraulic system illustrated
by figure 1 which is available in the Unit of research
Analysis, Conception and Control of Systems at National
Engineering School of Tunis ACCS-ENIT. It consists of
three interconnected tanks 71, T2 and T'3. The tanks at the
extremity 7’1 and 7'3 have similar sections S = S1 = S3.
They are connected to 71 having a section S2 through two
solenoid-operated valves Vi and Va3. All tanks are equipped
with three drain valves respectively denoted Vi, Vo and Vi.
The filling of tanks is assured by two pumps supplying the
same flow (Q1 = @2). Three ultrasonic sensors are placed
on top of each tank to measure water levels. We denote as :

- @1, the filling rate of the pump P1,
- 2, the filling rate of the pump P2,
- Hy, Hy and Hj, the water levels of each tank.

H2

Tank T

Va3

va V3

Figure 1.

System consisting of three interconnected tanks.

B. Diagnosis methodology

The multi-model approach consists in representing a given
system by a set of simple models. Each model represents a
required behavior in a considered state. The transition from

one model to another is due to the occurrence of an event
reflected in the evolution of the functioning zone.

Because of their complexity, industrial systems can operate
in several modes, where each one fulfills a required mission.
Each mode may correspond to several models. For example,
For a given operating mode M, it is possible to consider a
first correct model w; for which the system fulfills perfectly
its normal behavior, and a second faulty model ws for which
the system operates with the presence of a fault.

In this part, we adopt a multi-model approach for the
diagnosis of the hydraulic system previously described in the
figure 1. Two modes are considered: the first one is denoted
M, for which the valve V5 is closed and the second one is
denoted M5 for which the valve Va3 is closed. Two operating
models are considered for each of these modes: a normal
functioning model and a faulty functioning model. This last
one corresponds to a progressive failure affecting the pumps.
All modes and their corresponding models are described in
the table below.

Table I
FUNCTIONING MODES AND THEIR CORRESPONDING MODELS.

Mode l Model l Type
Mode M7 Model wq Normal functioning
(V12 closed)| (pumps in correct operating)
Model w2 Faulty functioning
(pumps in progressive failure)
Mode Mo Model w3 Normal functioning
(Va3 closed)| (pumps in correct operating)
Model w4 Faulty functioning
(pumps in progressive failure)

We assume that the transition from one mode to another
is done by switching, while the transition from one model to
another is performed with a slow progressive transition, as
described in figure 2.

Transition by
switching

Mode M1

Slow progressive
transition

1
1
1
1
]
1
i
‘ Model w2 |:
1
1
1
1
1
]
1
1

Slow progressive
transition

1
1
1
1
1
1
i
:| Model wa |
1
1
1
1
1
1
1
1

| Model wa |

Slow progressive Slow progressive
transition transition

I
I
I
I
I
I
i
! Model w1
I
I
I
I
I
I
I
I

Transition by
switching

Modes, models and their transitions.

Figure 2.

Commonly, the models wy (k = 1,...,4) are obtained by
a mathematical modeling of the system behavior in several
operating states. In the paradigm of data classification, these
models consist of disjoint functioning zones illustrated in the
projection space by shapes named “classes”. Each class refers
to one functioning zone (or functioning condition). In the
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case of SVDD classifier, these classes are restricted in the set
of boundary points that delimit them. These points, called
Support Vectors SV's are obtained according to the statistical
learning of SVDD formalized in the previous section.

The online classification of observations is made by a
recognition procedure which measures the membership degree
of a new instance z; to each class wy. This measure is
estimated using the membership function F'(.,.) given by (8).
We get at the end a bench of four membership functions
described as follows:

N
Fr(wg, 2t) = K(24,2¢) — 22aiK(zz, Thi)+
i=1
N N (18)
ZZaiajK(xk’i,xk,j), k=1,..,4

i=1j=1

{xk,i}ij\il is the training dataset associated respectively to
the classes wy (k = 1,...,4). The term K is the used Kernel
function. We adopt for experiments the Gaussian distribution
to describe densities. We express the Gaussian Kernel function
as:

2
|
20

_||xz._

K(xiaxj):exp ) VZ#] (19)

where o is the scale parameter. The instance z; is an input
vector consisting of three attributes representing the water level
at the current iteration in each tank. Hence, z; is defined as:

H,

Hy
Hj

Zt =

(20)

The above functions (18) provide as output some measure of
distance which gives the membership degree of a new instance
z¢ to one of the existing classes. The model in which the
system operates corresponds to the maximum output of the
associated function membership, as shown in figure (3).

C. Simulations

Referring to the methodology described above, the goal is to
follow online the process, detect any change in its functioning
as soon as it occurs and identify the model in which the
process operates. To do so, we simulate the process according
to the following sequence: wi, ws, w3 and wy. The transition
from w; to we and from ws to wy is a slow progressive
transition. For cons, the transition from model ws to model
ws is performed by switching.

For each coming instance z;, we evaluate the output pro-
vided by the functions Fj(wy,z:) defined above. To each
function Fj(wy,2¢), we attribute some binary validity wvy.
This last one takes the score ”1” if the output of Fj(wy, z¢)
corresponds to the maximum output among all, otherwise vy,
takes ”0”. v can be expressed thus as:

if Fp(wg,zt) = max {Fi(wi,zt)}?zl , vp =1

(21)
else v, =0
where £k =1, ..., 4.
Mode M1
g Function Fr
of model wi |
, Function Fz
% = I
g | ™ of model we
e —F— ! | Decision
o | Process | | S Max |-
i Function Fa r
\ X ) L
" 1 of model ws [T
Exterior  |nput vector
interactions (instance) Ly Function Fe i
of model ws
Mode M2

Figure 3. Modes, models and their transitions.

Figure (5) shows the function outputs Fy(wg,z;) and
their validities. Referring to this figure, we can extract four
functioning zones:

- Zone 1, in which the system operates according to model
w1, given that membership function of w; corresponds to
the maximum value in this range of time.

- Zone 2, in which the system operates according to model
wo. Similarly, this zone corresponds to the maximum
output of the membership function of model ws.

- Zone 3, in which the system operates with respect to the
third model ws.

- Zone 4, in which the system operates with respect to the
fourth model wy.

o . d T
06 » Center
SVDD
0s Zone 3 . * Observation
% +
04f--Zone 3-4 >
2 %
%)
i i s g s
5 Zone 4 £l ¥ Drifting
T o2 ) shapes .
= AR O 5 " >
ag Friaty
= 0.1 & ‘.*}‘: ‘(/ i 3 .
i "»;: ”'." Q‘
4 ey
0 RES g Zone 1
0.1 Zone Zone-1-2
02

-0.2 -0.1 0 0.1 0.2 0.3 0.4 05 0.6 0.7
water level Hy

Figure 4. The SVDD estimation in the space of H; and H3 variables.

As well, there two transition zones which are Zone 1-2
and Zone 3-4. These zones are due to the fact the system
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Figure 5. Outputs of membership functions and validities.
shifts from model w; to model ws and from model w3 to REFERENCES

model w, slowly and progressively. This gives arise to drifting
shapes that evolves in the projection space and acts as a sliding
data window. As shown in figure (4), despite these dynamic
phenomena, the SVDD is dynamically updated and maintained
in order to track these evolutions.

V. CONCLUSION

In this paper, we proposed a robust methodology for di-
agnosis and system safety based on classification with an
improvement version of SVDD technique. This last one is
adapted to deal with three main issues. The first one is
related to the QP complexity which grows with respect to the
number of training samples. Based on KKT conditions, some
approximations on the size of the training dataset are adopted
to optimize the convergence time. The second problem
concerns the evolving data and drifting objects. To cope
with these phenomena, the proposed algorithm is endowed
with useful tools which maintain dynamically the described
data domain by inserting new samples and removing the most
irrelevant ones according to adequate rules. Based on such
SVDD classifier, the goal is to ensure the online diagnosis of
system and distinguish between different functioning models.
Hence, we adopted a multi-model approach to describe the
diagnosed system, since it can operate in various models. We
considered also the situation in which the transition between
models is progressive and slow to prove the effectiveness of
the SVDD algorithm against degraded data. The approach was
assessed afterwards on a hydraulic system consisting of three
interconnected tanks.
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